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J. Phys. A: Math. Gen. 14 (1981) L17-L21. Printed in Great Britain 

LETTER TO THE EDITOR 

Varying exponent of the impurity magnetisation in the 
Ising chain with a transverse field 

K Uzelact, R Jullien and P Pfeuty 
Laboratoire de Physique des Solidest, Universitt Paris-Sud, Centre d'Orsay, 91405 Orsay, 
France 

Reczived 29 September 1980 

Abstract. Using a T = 0 real-space renormalisation-group method, the spontaneous 
magnetisation is calculated on an impurity site of the quantum spin-i Ising chain in a 
transverse field. Two kinds of impurities are considered: either a transverse field or a bond 
is different from its host value. In both cases the magnetisation vanishes at the critical field 
with an exponent Po different from the host exponent and varying continuously with the 
impurity field (or impurity bond). These results agree with recent exact investigations of 
equivalent classical two-dimensional models. 

It is of interest to study the influence and the role of different kinds of defects or 
impurities on the properties of a system that undergoes a second-order phase transition. 
In the case of an isolated impurity, it is well known that the global characteristics of the 
transition are not affected. However, the local properties in the vicinity of the impurity 
site could be greatly different from the host properties. We have chosen to study this 
problem in the case of the spin-; Ising chain in a transverse field described by the 
Hamiltonian 

where 

Sf=( ,  0 1  o) si=(l 0 -1 O ) .  

In the uniform case (Ji = J ,  hi h )  this quantum system undergoes at T = 0 a second- 
order phase transition by increasing the transverse field. Exact results (Pfeuty 1970) 
show that below a critical value (h/J),= 1, the ground state is degenerate with a 
non-zero ground-state magnetisation (S ; )  # 0, which vanishes at the critical field with 
exponent p = k while for h / J  > (h/J), the ground state is a singlet, in which ( S ; )  = 0. 
This d = 1 quantum model at T = 0 maps onto the d = 2 classical Ising model (Suzuki 
1971) with horizontal (i.e. in the direction of the quantum chain) Ising constants J1 and 
vertical Ising constants J2 in the limit J1 + 0, J2 + CO with 

(Jl/kT)-' exp(-2Jz/kT) + h/J. (3 1 

i Permanent address: Institute of Physics of the University, Zagreb, Croatia, Yugoslavia. 
t Laboratoire associd au CNRS. 

0305-4470/81/010017+05$01.50 @ 1981 The Institute of Physics L17 



L18 letter to the Editor 

The characteristics of the transition have recently been well reproduced by a 
real-space renormalisation-group approach (Drell et a1 1976, Jullien et a1 1978) well 
adapted to study quantum lattice systems at T = 0. The purpose of this Letter is to 
present an extension of this renormalisation-group approach in the case where a local 
defect is included. We will consider two simple cases (see the upper part of figure 1): ( a )  
the bond between sites i = 0 and i = 1 is different from the others, i.e. Jo = J’  # J while 
Ji = J  for i # 0 and hi = h everywhere; ( b )  the field on site i = 0 is different from the 
others, i.e. ho = h‘ # h, while hi = h for i # 0 and Ji = J everywhere. In both cases we 
have calculated the x component of the magnetisation ( S g )  in the ground state on the 
impurity site i = 0. As a main result of our calculations, we find that the magnetisation 
vanishes at the host transition, i.e. for h/J  = (h/J) , ,  with an exponent Po different from 
the host exponent P and varying continuously with J ’ / J  in case (a )  and h’/h in case (b  ). 
The classical two-dimensional equivalent problems (lower part of figure 1) have 
recently been intigated by Bariev (1979) and also by McCoy and Perk (1980). Our 
approximate results agree with their exact predictions in the limit of the Suzuki 
equivalence. 

J J ’ J J  J J J J  

h h h h h  - r r F - x -  
(a1 ( b l  

la1 lb I 

Figure 1. Sketch of the two kinds of impurities in the quantum chain (upper part): ( a )  a local 
bond is different from the others; ( b )  a local transverse field is different from the others. The 
corresponding classical equivalent two-dimensional Ising models are shown in the lower 
part of the figure. 

The method is an iterative and approximate construction of the ground state of the 
whole chain. At each iteration the chain is divided in adjacent blocks of n, sites. All the 
blocks are equivalent except the block containing the impurity. The Hamiltonian is 
solved exactly for both the impurity block and the host block. Then a subset of nL 
low-lying levels is retained to rewrite the original interblock couplings and we obtain a 
new Hamiltonian dealing with blocks, on which we repeat the procedure until the 
parameters reach ‘fixed-point’ values. Details of the procedure were explained in the 
treatment of the homogeneous problem (Jullien eta1 1978). The only difference here is 
the number nL of levels retained. There the two lowest levels were sufficiently 
separated so that taking nL = 2 was sufficie3t to obtain reliable results. This is no longer 
the case here, where a larger number of levels must be considered. We have performed 
calculations for nL = 3 and nL = 4 (with n, = 3) and we present here the more precise 
calculations performed with nL  = 4. 
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At step ( n )  the Hamiltonian takes the general form 

Din' is a diagonal matrix of order nL = 4 containing the energy levels El ,  E*, E3, E4 for 
the host sites and E ;  E;, E;, E: for the impurity site. A!"' and Bin' are matrices of 
order nL = 4 containing the coupling parameters, the elements of which are different for 
the host sites and for the impurity site. Initially, we group the sites two by two, in order 
to have two spins per site and the four levels considered are exact. We solve exactly the 
blocks of three sites (at the first step this corresponds to solving exactly a chain of six 
spins), then we retain the four lowest levels, etc. Computer diagonalisations are 
performed at each step using the symmetries at maximum. The different matrix 
elements of Di, Ai, B, on both the host sites and the impurity site are followed during the 
iterative process. The results depend numerically on the choice for the location of the 
impurity in the impurity block. This artifact can be avoided by averaging at each step 
the new matrix elements for the impurity block over the n,  = 3 possibilities of location 
for the impurity site. 

As in the two-level scheme, we observe that the two lowest states become 
degenerate when n + CO for h / J  lower than a critical value (h/J) , ,  while a gap opens for 
h / J >  (h/J) , .  Here, for n,  = 3, nL=4 ,  we find the more precise result (h /J ) ,= 
0.969997..  . . 

The magnetisation is calculated by following the 4 X 4 matrix representation of an 
initial operator Sf through the iterations, up to the fixed point, the magnetisation then 
being represented by the element (1,2) of the matrix. As previously observed (Jullien et 
a1 1978), the results depend on the site i. This artifact is avoided by renormalising 
instead an averaged operator over the block. We have preferred this procedure instead 
of that used previously (Jullien eta1 1978), which consists of considering a site located at 
the centre, or near the centre, of the block, because with nL = 4 one of the levels is 
block-antisymmetric and the average gives a more correct result. For the host 
magnetisation (far away from the impurity site) we follow an averaged operator always 
for an host block. We find for the host magnetisation an exponent p = 0*124*0.002, 
which, accidentally, is extremely good (the exact result is p = 0.125). In order to 
compare with the previous results for the pure chain (Jullien et a1 1978), let us give the 
results for the other exponents: t = 1.10, 7, = 0.286, s = 0.95, v = 0.87 (exact: t = s = 
v = 1, 7, = 0025). 

For the magnetisation on the impurity site, we also follow an averaged operator 
which, now, always refers to the impurity site, but is averaged over the three possible 
positions of the impurity in the block. 

The results for the impurity magnetisation are given as a function of h / J  in figure 2 
for different values of J ' / J  (case ( a ) )  or h / h '  (case (b ) ) .  For a given value of h / J  the 
magnetisation increases with J ' / J  (case ( a ) )  or h/h '  (case (b ) )  and tends to 1 when J ' / J  
or h/h '  tends to infinity. This upper limit can easily be understood, since in case ( a )  
h/h '  = CO corresponds to h' = 0, where the impurity spin has no local constraint and 
aligns completely in the field of neighbouring spins, while in case ( b )  J ' / J = c o  
corresponds to the consideration of a molecule of two sites in the ground state of which 
(Sg) = ( S ; )  = *l.  However, the lower limits when h / h ' +  0 or J ' / J  + 0 are different in 
the two cases: in case ( a )  h/h'+O corresponds to h ' + m  where the impurity spin is 
forced to be completely aligned in the direction and thus (Sg)+ 0, while in case (b ) ,  
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Figure 2. Results for the impurity magnetisation (Sc) as a function of h / J  for different 
values of J ' / J  (case ( a ) )  or h/h'  (case ( b ) ) .  

when J ' / J  + 0, '$6) tends to a non-zero limit which corresponds to the edge magnetisa- 
tion. 

In both cases, the variation in the shape of ( S g )  is also accompanied by a variation of 
the exponent Po defined in the vicinity of ( h / J ) ,  by 

( 5 )  

The results for both cases ( a )  and ( b )  are given in figure 3 as a plot of Po as a function of 
J ' / J  (case (a ) )  or h/h '  (case (6)). The two curves are almost superposed, and Po varies 
from about 0.32 (for J ' / J  = 0 or h/h '  = 0) to zero (for J ' / J  + CO or h/h'-+ CO). Note that 
the edge exponent, which is known exactly to be 0.5, is here only approximately 
recovered for J ' / J  = 0. This is due to the fact that for J '  = 0, the impurity block is cut in 
two parts; this corresponds to considering a smaller block, thus increasing the error. 

The same behaviour was found in the equivalent two-dimensional Ising model 
studied by Bariev (1979) and McCoy and Perk (1980). Our cases ( a )  and ( b )  
correspond to the cases ( a )  and (6) of Bariev (1979) sketched in the lower part of figure 
1:  a line of horizontal bond defects is located between two neighbouring columns (case 
(a ) )  or a line of vertical defects lies inside one column (case (6)). Bariev derived the 
exact formula 

(S;S) - [ ( h / J ) ,  - (h/J)I". 

1 po = 9 (CO? ( - x ) ) 2  

Figure 3. Exponent Po of the impurity magnetisation as a function of J ' / J  (case (a ) )  or h/h '  
(case ( b ) ) .  The exact formula (8) is represented by the broken curve. 
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where 

cosh(2JllkT) - cosh(:! J;/ kT)  
cosh(2JllkT) cosh(2J;lkT) - 1 X =  (case ( a ) )  

x = tanh[2(Jz - J; ) / k T ]  (case (b)).  (7 ) 
In Suzuki’s (197 1) equivalence given by formula (3), the following correspondence 
holds between Bariev’s notations and ours: 

J;/Ji + J‘/J case ( a )  

exp[2(J; - Jz)]+ h/h’ case (b ) .  (8) 
Then formula (6) corresponds to 

and exactly the same formula holds in case ( b )  if J‘/J is replaced by h/h’.  Formula (8) is 
represented by the broken curve of figure 3, which starts from the exact edge value 0.5 
for J’/J = 0, goes through the exact host value 0.125 for J’/J = 1 and tends to zero 
when J‘/J + 00. One can see from figure 3 that, considering the approximations used, 
our calculations reproduce quite well the predictions of formula (8), except for the 
shape near J’ = 0. 

It would be interesting to extend the present calculations to a study of the variation 
of the magnetisation with distance from the impurity site or to a study of other kinds of 
defects. We are presently studying a ‘grain boundary’ in the Ising chain with a 
transverse field, i.e. a model where Ji = J for i < 0 and Ji = J’ for i > 0, while hi = h 
everywhere. These studies are performed in the context of analysing the different types 
of effects introduced by disorder, when treating a completely disordered quantum Ising 
chain by the same kind of techniques (Uzelac et a1 1980). 

References 

Bariev R Z 1979 Z h .  Eksp. Teor. Fiz. 77 1217 (transl. Sou. Phys.-JETP 50 613) 
Drell S D, Weinstein M and Yankielowicz S 1976 Phys. Rev. D 14 487 
Jullien R, Pfeuty P, Fields J N and Doniach S 1978 Phys. Rev. B 18 3568 
McCoy B M and Perk J H H 1980 Phys. Rev. Lett. 44 840 
Pfeuty P 1970 A n n .  Phys. 57 79 
Suzuki M 1971 Prog. Theor. Phys. 46 1337 
Uzelac K, Jullien R and Pfeuty P 1980 J. Phys. A:  Math. Gen. 13 3735 


